Growth and characterization of ceria thin films and Ce-doped γ-Al2O3 nanowires using sol-gel techniques.
نویسندگان
چکیده
γ-Al(2)O(3) is a well known catalyst support. The addition of Ce to γ-Al(2)O(3) is known to beneficially retard the phase transformation of γ-Al(2)O(3) to α-Al(2)O(3) and stabilize the γ-pore structure. In this work, Ce-doped γ-Al(2)O(3) nanowires have been prepared by a novel method employing an anodic aluminium oxide (AAO) template in a 0.01 M cerium nitrate solution, assisted by urea hydrolysis. Calcination at 500 °C for 6 h resulted in the crystallization of the Ce-doped AlOOH gel to form Ce-doped γ-Al(2)O(3) nanowires. Ce(3+) ions within the nanowires were present at a concentration of < 1 at.%. On the template surface, a nanocrystalline CeO(2) thin film was deposited with a cubic fluorite structure and a crystallite size of 6-7 nm. Characterization of the nanowires and thin films was performed using scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy, x-ray photoelectron spectroscopy and x-ray diffraction. The nanowire formation mechanism and urea hydrolysis kinetics are discussed in terms of the pH evolution during the reaction. The Ce-doped γ-Al(2)O(3) nanowires are likely to find useful applications in catalysis and this novel method can be exploited further for doping alumina nanowires with other rare earth elements.
منابع مشابه
Characterization of Pure and Antimony Doped SnO2 Thin Films Prepared by the Sol-Gel Technique
Pure and antimony doped SnO2 thin films have been prepared by the sol-gel dip coating technique on glass substrate using starting material SnCl2.2H2O as a host and SbCl3 as a dopant. Our experimental results revealed that, the quality of the coated films on the glass depends on process parameters. The effect of annealing temperature, dipping numbe...
متن کاملAl Doped ZnO Thin Films; Preparation and Characterization
ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...
متن کاملFabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
In this study, different samples of Niobium and Vanadium co-doped titania thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...
متن کاملFabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
In this study, different samples of Niobium and Vanadium co-doped titania thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...
متن کاملEffects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films
In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 21 46 شماره
صفحات -
تاریخ انتشار 2010